1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
max_steps = 1001
image_num = 3000
DIR = "F:/workspace/Python/tensorflow_learning/test/"
sess = tf.Session()
embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding')
def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var)
with tf.name_scope('input'): x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('input_reshape'): image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', image_shaped_input, 10)
with tf.name_scope('layer'): with tf.name_scope('weights'): W = tf.Variable(tf.zeros([784,10]),name='W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]),name='b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) tf.summary.scalar('loss',loss) with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
sess.run(tf.global_variables_initializer())
with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy',accuracy)
if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'): tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv') with open(DIR + 'projector/projector/metadata.tsv', 'w') as f: labels = sess.run(tf.argmax(mnist.test.labels[:],1)) for i in range(image_num): f.write(str(labels[i]) + '\n')
merged = tf.summary.merge_all()
projector_writer = tf.summary.FileWriter(DIR + 'projector/projector',sess.graph) saver = tf.train.Saver() config = projector.ProjectorConfig() embed = config.embeddings.add() embed.tensor_name = embedding.name embed.metadata_path = DIR + 'projector/projector/metadata.tsv' embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png' embed.sprite.single_image_dim.extend([28,28]) projector.visualize_embeddings(projector_writer,config)
for i in range(max_steps): batch_xs,batch_ys = mnist.train.next_batch(100) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys},options=run_options,run_metadata=run_metadata) projector_writer.add_run_metadata(run_metadata, 'step%03d' % i) projector_writer.add_summary(summary, i) if i%100 == 0: acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print ("Iter " + str(i) + ", Testing Accuracy= " + str(acc))
saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps) projector_writer.close() sess.close()
|