本文主要分享一个利用神经网络来预测非线性回归的示例。
首先,定义生成我们的测试数据,即y_data = np.square(x_data) + noise,通过x_data的平方再加上噪声来生成y_data.
然后,利用神经网络,将x_data作为输入,得到预测值。然后让预测值与y_data做比较,使其差异最小。
x_data ==>神经网络中间层==>神经网络输出层==>预测值
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
| import tensorflow as tf import numpy as np import matplotlib.pyplot as plt
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] noise = np.random.normal(0, 0.02, x_data.shape) y_data = np.square(x_data) + noise
x = tf.placeholder(tf.float32, [None, 1]) y = tf.placeholder(tf.float32, [None, 1])
Weights_L1 = tf.Variable(tf.random_normal([1, 10])) biases_L1 = tf.Variable(tf.zeros([1, 10])) Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1 L1 = tf.nn.tanh(Wx_plus_b_L1)
Weights_L2 = tf.Variable(tf.random_normal([10, 1])) biases_L2 = tf.Variable(tf.zeros([1, 1])) Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2 prediction = tf.nn.tanh(Wx_plus_b_L2)
loss = tf.reduce_mean(tf.square(y - prediction))
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(2001): sess.run(train_step, feed_dict={x: x_data, y: y_data}) print(Weights_L1,biases_L1) print(Weights_L2, biases_L2) prediction_value = sess.run(prediction, feed_dict={x: x_data}) plt.figure() plt.scatter(x_data, y_data) plt.plot(x_data, prediction_value, 'r-', lw=5) plt.show()
|